Бесконечное произведение - definizione. Che cos'è Бесконечное произведение
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Бесконечное произведение - definizione


Бесконечное произведение         

произведение бесконечного числа сомножителей u1, u2,..., un,..., т. е. выражение вида

Б. п., в котором сомножителями являются числа, иногда называемые бесконечным числовым произведением. Б. п. не всегда может быть приписано числовое значение. Если существует отличный от нуля Предел последовательности частичных произведений

pn = u1 u2... un

при n → ∞, то Б. п. называется сходящимся, a lim pn = р - его значением, и пишут:

Исторически Б. п. впервые встретились в связи с задачей о вычислении числа π. Так, французский математик Ф. Виет (16 в.) получил формулу:

а английский математик Дж. Валлис (17 в.) - формулу:

Особое значение Б. п. приобрели после работ Л. Эйлера, применившего Б. п. для изображения функций. Примером может служить разложение синуса:

Разложения функций в Б. п. аналогичны разложениям многочленов на линейные множители; они замечательны тем, что выявляют все значения независимого переменного, при которых функция обращается в нуль.

Для сходимости Б. п. необходимо и достаточно, чтобы un ≠ 0 для всех номеров n, чтобы uN > 0, начиная с некоторого номера N, и чтобы сходился ряд

Т. о., исследование сходимости Б. п. эквивалентно исследованию сходимости этого ряда.

Лит.: Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, т. 2, М.- Л., 1966; Ильин В. А., Позняк Э. Г., Основы математического анализа, М., 1965.

БЕСКОНЕЧНОЕ ПРОИЗВЕДЕНИЕ         
произведение бесконечного числа сомножителей , т. е. выражение вида:
Произведение (теория категорий)         
  • Universal product of the product
  • Universal product of the product
  • center
ТАКАЯ ОПЕРАЦИЯ НАД КАТЕГОРИЯМИ, ТАКЖЕ ЕЁ РЕЗУЛЬТАТ
Произведение семейства объектов категории; Категорное произведение
Произведение двух или более объектов — это обобщение в теории категорий таких понятий, как декартово произведение множеств, прямое произведение групп и произведение топологических пространств. Произведение семейства объектов — это в некотором смысле самый общий объект, имеющий морфизмы во все объекты семейства.

Wikipedia

Бесконечное произведение
В математике для последовательности чисел a_1,a_2,a_3,\dots бесконечное произведение